A Compositional Approach to Bidirectional Model Transformation

ICSE'09 New Ideas and Emerging Results

Soichiro HIDAKA Zhenjiang HU Hiroyuki KATO National Institute of Informatics, Japan

Introduction

In bidirectional model transformation, modifications propagate from source models to target models as well as from target to source. Although bidirectional model transformation plays an important role in model-driven software development, lack of clear semantics of composition is one of open problems.

Proposed Approach and Results

Compositional graph transformation language UnQL

- is extended for bidirectional model transformation by
 - Editing primitives (replace, delete, extend) [1]
 Bidirectional interpretation of each graph construint
 - Bidirectional interpretation of each graph constructors and combinators [2]

Models as Edge-labeled Graphs

Models are internally represented by edge-labeled graphs.

Class diagram: an example of models to be transformed

Model Transformations in UnQL+

Transformation to prefix every name of the class by "class_" can be expressed in UnQL+ as

 $\label{eq:states} \end{tabular} \label{eq:states} \end{tabular} \label{eq:states} \end{tabular} \e$

Bidirectional Evaluator and its property

Every UnQL+ program is translated[1] into UnCAL in which fixed number of constructors and combinators are combined to form a bigger transformation.

 e_1

Formal semantics: union (\cup) example

Two transformations are executed componentwise and combined.

$$\frac{\longrightarrow g_1 \quad \rho \longrightarrow g_2 \quad g_1 \cup g_2 \Rightarrow g_1}{e_1 \cup e_2}$$

 e_2

No change on the target g should give no change on the source (environment) ρ .

$$\frac{\rho \xrightarrow{e} g}{\rho \xleftarrow{e} g} \quad [\text{GetPut}]$$

Keisuke NAKANO The University of Electro-Communications, Japan

A compositional Framework for Bidirectional Model Transformation

Internal representation of the class diagram that is transformed by our system

 $E ::= \{\} | \{L : E\} | E \cup E$ | &x := E | &y | () | E \oplus E | E @ E | cycle(E) | Var | let Var = E in E | if B then E else E | rec(λ (LabelVar,Var).E)(E)

- (* tree constructors *)
- (* graph constructors *)
- (* graph with cycles *)
- (* variables *)
- (* sequential composition *)
- (* conditional *)
- (* structural recursion *)

Syntax of UnCAL graph algebra

Modified target (g) are decomposed and the resultant components are fed to backward transformation.

$$\frac{\rho' \Rightarrow_{\rho} (g_1', g_2') \quad \rho_1' \stackrel{e_1}{\underset{\rho}{\leftarrow} \rho} g_1' \quad \rho_2' \stackrel{e_2}{\underset{\rho}{\leftarrow} \rho} g_2'}{\rho_1' \uplus_{\rho} \rho_2'} (BWD)$$

 $\rho' \xrightarrow{e} q'$

Another forward transformation from the modified source
$$\rho$$
' produces g ' again.

$$\frac{\rho' \frac{e}{\rho} g'}{\frac{1}{\rho}} \quad [PutGet]$$

- Demonstrate that functional approach is helpful to give bidirectional semantics in a formal and concise way

 Demonstration available at http://www.biglab.org/
- Compare/combine with rule based approach
- S. Hidaka, Z. Hu, H. Kato, K. Nakano, Towards Compositional Approach to Model Transformation for Software Development, SAC 2009: 468-475, Mar. 2009.
 S. Hidaka, Z. Hu, H. Kato, and K. Nakano. An Algebraic approach to bidirectional model transformations. Technical Report GRACE-TR08-02, GRACE Center, National Institute of Informatics, Sept. 2008.

Soichiro HIDAKA

