
A Compositional Approach to Bidirectional Model TransformationA Compositional Approach to Bidirectional Model Transformation

The University of Electro-Communications, Japan
Keisuke NAKANO

National Institute of Informatics, Japan
Hiroyuki KATOZhenjiang HUSoichiro HIDAKA

ICSE’09 New Ideas and Emerging Results

IntroductionIntroduction

Proposed Approach and ResultsProposed Approach and Results

In bidirectional model transformation, modifications
propagate from source models to target models as well
as from target to source. Although bidirectional model
transformation plays an important role in model-driven
software development, lack of clear semantics of
composition is one of open problems.

Compositional graph transformation language UnQL
is extended for bidirectional model transformation by

Editing primitives (replace, delete, extend) [1]
Bidirectional interpretation of each graph constructors
and combinators [2]

Models are internally represented by edge-labeled graphs.
Models as EdgeModels as Edge--labeled Graphslabeled Graphs A compositional Framework for Bidirectional A compositional Framework for Bidirectional

Model TransformationModel Transformation

Bidirectional Evaluator
• Bidirectionalization
• Optimization (fusion
…)

Bidirectional Evaluator
• Bidirectionalization
• Optimization (fusion
…)

Model Transformation in UnQL+
(Compositional and Functional)

Model Transformation in UnQL+
(Compositional and Functional)

Graph Algebras
(Graph Construction and Structural Recursion)

Graph Algebras
(Graph Construction and Structural Recursion)

DesugaringDesugaring

Bidirectional Evaluator
• Bidirectionalization
• Fusion Optimization

Bidirectional Evaluator
• Bidirectionalization
• Fusion Optimization

Source
Model
Source
Model

Target
Model
Target
Model

Soichiro HIDAKA

Impact and Impact and FutureFuture WorkWork

Syntax of Syntax of UnCALUnCAL graph algebragraph algebra

E ::= {} | {L : E} | E ∪ E
| &x := E | &y | () | E ⊕ E| E @ E
| cycle(E)
| Var
| let Var = E in E
| if B then E else E
| rec(λ(LabelVar,Var).E)(E)

[1] S. Hidaka, Z. Hu, H. Kato, K. Nakano, Towards Compositional Approach to Model Transformation for Software Development, SAC 2009: 468-475, Mar. 2009.
[2] S. Hidaka, Z. Hu, H. Kato, and K. Nakano. An Algebraic approach to bidirectional model transformations. Technical Report GRACE-TR08-02, GRACE Center, National Institute of Informatics, Sept. 2008.

 [GetPut]
e

e
g

gρ

ρ

ρ
 [PutGet]

e
g

e
g

ρρ

ρ

′ ′

′ ′

replace {$name : {}} by {("class_"ˆ$name):{}} where
{_*.Class.name.String:{$name:{}}} in $classDB

Bidirectional Evaluator and its propertyBidirectional Evaluator and its property

1 2

21
1 2 1 1 2 2

1 2

BWD
(,)

()e e

ee
g g g g g

g

ρ ρ ρ

ρ ρ

ρ ρ

ρ ρ+
∪

′ ′ ′ ′ ′ ′ ′⇒

′ ′ ′∪

1 2

1 2 1 2

1 2
FWD()

e e
g g g g g

e e
g

ρ ρ

ρ

∪ ⇒

∪

Demonstrate that functional approach is helpful to give bidirectional semantics in a formal and concise way
- Demonstration available at http://www.biglab.org/

Compare/combine with rule based approach

Project URL: http://www.biglab.org/

Every UnQL+ program is translated[1] into UnCAL in
which fixed number of constructors and combinators
are combined to form a bigger transformation.

Transformation to prefix every name of the class by
“class_” can be expressed in UnQL+ as

Modified target (g’) are decom-
posed and the resultant com-
ponents are fed to backward
transformation.

Formal semantics: union (Formal semantics: union (∪∪) example) example
Two transformations are
executed componentwise
and combined.

Well Well behavednessbehavedness
No change on the target g should give no
change on the source (environment) ρ.

Another forward transformation from the
modified source ρ’ produces g’ again.

Model Transformations in Model Transformations in UnQLUnQL++
(* tree constructors *)
(* graph constructors *)
(* graph with cycles *)
(* variables *)
(* sequential composition *)
(* conditional *)
(* structural recursion *)

Class diagram: an example Class diagram: an example
of models to be transformedof models to be transformed Internal representation of the class diagram that is Internal representation of the class diagram that is

transformed by our systemtransformed by our system

57 54

56

String

65

53

Class

51

src_of

50

46

Class

47

49

String

61

Class

44

src_of

43

Class

68 42

67

String

33

41

Boolean

27

Attribute

64 39

63

String

32

38

Boolean

23

Attribute

60 36

59

String

31

35

Boolean

19

Attribute

30 8

29

String

26

7

Boolean

5

25

String

18

4

Boolean

16

PrimitiveDataType

22 17

21

String

2

12

PrimitiveDataType

1

Boolean

0

true

3

true

6

true

10

9

"Integer"

11

String

name

14

13

"String"

15

String

name

nametype is_primary

20

"number"

name is_primary type

24

"addr"

name is_primary type

28

"name"

34

true

37

false

40

true

name is_persistent attrs

45

namesrc Association dest

name is_persistent attrs

48

"phone"

52

name src Association dest

nameis_persistent attrs

55

"address"

58

"Phone"

62

"Address"

66

"Person"

69

AssociationAssociation
Association

name = "address"

Class
name = "Person"
 is_persistent = true

src_of src

Class
name = "Address"
 is_persistent = false

 dest

Association

name = "phone"

src_of src

Class
name = "Phone"
 is_persistent = true

 dest

Attribute
name = "name"
 is_primary = true

 attrs

Attribute
name = "addr"
 is_primary = true

 attrs

Attribute
name = "number"
 is_primary = true

 attrs

PrimitiveDataType

name = "String"

 type type

PrimitiveDataType

name = "Integer"

 type

